Assignment3: TSPL Assignment 3
module Assignment3 where
YOUR NAME AND EMAIL GOES HERE
Introduction
You must do all the exercises labelled “(recommended)”.
Exercises labelled “(stretch)” are there to provide an extra challenge. You don’t need to do all of these, but should attempt at least a few.
Exercises labelled “(practice)” are included for those who want extra practice.
Submit your homework using the “submit” command. Please ensure your files execute correctly under Agda!
Good Scholarly Practice.
Please remember the University requirement as regards all assessed work. Details about this can be found at:
https://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
Furthermore, you are required to take reasonable measures to protect your assessed work from unauthorised access. For example, if you put any such work on a public repository then you must set access permissions appropriately (generally permitting access only to yourself, or your group in the case of group practicals).
Decidable
module Decidable where
Imports
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc) open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using () renaming (contradiction to ¬¬-intro) open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥; ⊥-elim) open import plfa.part1.Relations using (_<_; z<s; s<s) open import plfa.part1.Isomorphism using (_⇔_)
open import plfa.part1.Decidable hiding (_<?_; _≡ℕ?_; ∧-×; ∨-⊎; not-¬; _iff_; _⇔-dec_; iff-⇔)
Exercise _<?_
(recommended)
Analogous to the function above, define a function to decide strict inequality:postulate _<?_ : ∀ (m n : ℕ) → Dec (m < n)
-- Your code goes here
Exercise _≡ℕ?_
(practice)
Define a function to decide whether two naturals are equal:postulate _≡ℕ?_ : ∀ (m n : ℕ) → Dec (m ≡ n)
-- Your code goes here
Exercise erasure
(practice)
Show that erasure relates corresponding boolean and decidable operations:postulate ∧-× : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∧ ⌊ y ⌋ ≡ ⌊ x ×-dec y ⌋ ∨-⊎ : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ ∨ ⌊ y ⌋ ≡ ⌊ x ⊎-dec y ⌋ not-¬ : ∀ {A : Set} (x : Dec A) → not ⌊ x ⌋ ≡ ⌊ ¬? x ⌋
Exercise iff-erasure
(recommended)
Give analogues of the _⇔_
operation from Chapter Isomorphism, operation on booleans and decidables, and also show the corresponding erasure:postulate _iff_ : Bool → Bool → Bool _⇔-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⇔ B) iff-⇔ : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ iff ⌊ y ⌋ ≡ ⌊ x ⇔-dec y ⌋
-- Your code goes here
Exercise False
(practice)
Give analogues of True
, toWitness
, and fromWitness
which work with negated properties. Call these False
, toWitnessFalse
, and fromWitnessFalse
.
Lists
module Lists where
Imports
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open Eq.≡-Reasoning open import Data.Bool using (Bool; true; false; T; _∧_; _∨_; not) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; s≤s; z≤n) open import Data.Nat.Properties using (+-assoc; +-identityˡ; +-identityʳ; *-assoc; *-identityˡ; *-identityʳ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Product using (_×_; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Function using (_∘_) open import Level using (Level) open import plfa.part1.Isomorphism using (_≃_; _⇔_)
open import plfa.part1.Lists hiding (downFrom; Tree; leaf; node; merge)
Exercise reverse-++-distrib
(recommended)
Show that the reverse of one list appended to another is the reverse of the second appended to the reverse of the first:
reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
Exercise reverse-involutive
(recommended)
A function is an involution if when applied twice it acts as the identity function. Show that reverse is an involution:
reverse (reverse xs) ≡ xs
Exercise map-compose
(practice)
Prove that the map of a composition is equal to the composition of two maps:
map (g ∘ f) ≡ map g ∘ map f
The last step of the proof requires extensionality.
-- Your code goes here
Exercise map-++-distribute
(practice)
Prove the following relationship between map and append:
map f (xs ++ ys) ≡ map f xs ++ map f ys
-- Your code goes here
Exercise map-Tree
(practice)
Define a type of trees with leaves of type A
and internal nodes of type B
:data Tree (A B : Set) : Set where leaf : A → Tree A B node : Tree A B → B → Tree A B → Tree A B
Define a suitable map operator over trees:
map-Tree : ∀ {A B C D : Set} → (A → C) → (B → D) → Tree A B → Tree C D
-- Your code goes here
Exercise product
(recommended)
Use fold to define a function to find the product of a list of numbers. For example:
product [ 1 , 2 , 3 , 4 ] ≡ 24
-- Your code goes here
Exercise foldr-++
(recommended)
Show that fold and append are related as follows:
foldr _⊗_ e (xs ++ ys) ≡ foldr _⊗_ (foldr _⊗_ e ys) xs
-- Your code goes here
Exercise foldr-∷
(practice)
Show
foldr _∷_ [] xs ≡ xs
Show as a consequence of foldr-++
above that
xs ++ ys ≡ foldr _∷_ ys xs
-- Your code goes here
Exercise map-is-foldr
(practice)
Show that map can be defined using fold:
map f ≡ foldr (λ x xs → f x ∷ xs) []
The proof requires extensionality.
-- Your code goes here
Exercise fold-Tree
(practice)
Define a suitable fold function for the type of trees given earlier:
fold-Tree : ∀ {A B C : Set} → (A → C) → (C → B → C → C) → Tree A B → C
-- Your code goes here
Exercise map-is-fold-Tree
(practice)
Demonstrate an analogue of map-is-foldr
for the type of trees.
-- Your code goes here
Exercise sum-downFrom
(stretch)
Define a function that counts down as follows:downFrom : ℕ → List ℕ downFrom zero = [] downFrom (suc n) = n ∷ downFrom nFor example:
_ : downFrom 3 ≡ [ 2 , 1 , 0 ] _ = refl
Prove that the sum of the numbers (n - 1) + ⋯ + 0
is equal to n * (n ∸ 1) / 2
:
sum (downFrom n) * 2 ≡ n * (n ∸ 1)
Exercise foldl
(practice)
Define a function foldl
which is analogous to foldr
, but where operations associate to the left rather than the right. For example:
foldr _⊗_ e [ x , y , z ] = x ⊗ (y ⊗ (z ⊗ e))
foldl _⊗_ e [ x , y , z ] = ((e ⊗ x) ⊗ y) ⊗ z
-- Your code goes here
Exercise foldr-monoid-foldl
(practice)
Show that if _⊗_
and e
form a monoid, then foldr _⊗_ e
and foldl _⊗_ e
always compute the same result.
-- Your code goes here
Exercise Any-++-⇔
(recommended)
Prove a result similar to All-++-⇔
, but with Any
in place of All
, and a suitable replacement for _×_
. As a consequence, demonstrate an equivalence relating _∈_
and _++_
.
-- Your code goes here
Exercise All-++-≃
(stretch)
Show that the equivalence All-++-⇔
can be extended to an isomorphism.
-- Your code goes here
Exercise ¬Any⇔All¬
(recommended)
Show that Any
and All
satisfy a version of De Morgan’s Law:
(¬_ ∘ Any P) xs ⇔ All (¬_ ∘ P) xs
(Can you see why it is important that here _∘_
is generalised to arbitrary levels, as described in the section on universe polymorphism?)
Do we also have the following?
(¬_ ∘ All P) xs ⇔ Any (¬_ ∘ P) xs
If so, prove; if not, explain why.
-- Your code goes here
Exercise ¬Any≃All¬
(stretch)
Show that the equivalence ¬Any⇔All¬
can be extended to an isomorphism. You will need to use extensionality.
-- Your code goes here
Exercise All-∀
(practice)
Show that All P xs
is isomorphic to ∀ x → x ∈ xs → P x
.
-- You code goes here
Exercise Any-∃
(practice)
Show that Any P xs
is isomorphic to ∃[ x ] (x ∈ xs × P x)
.
-- You code goes here
Exercise Any?
(stretch)
Just as All
has analogues all
and All?
which determine whether a predicate holds for every element of a list, so does Any
have analogues any
and Any?
which determine whether a predicate holds for some element of a list. Give their definitions.
-- Your code goes here
Exercise split
(stretch)
The relation merge
holds when two lists merge to give a third list.data merge {A : Set} : (xs ys zs : List A) → Set where [] : -------------- merge [] [] [] left-∷ : ∀ {x xs ys zs} → merge xs ys zs -------------------------- → merge (x ∷ xs) ys (x ∷ zs) right-∷ : ∀ {y xs ys zs} → merge xs ys zs -------------------------- → merge xs (y ∷ ys) (y ∷ zs)For example,
_ : merge [ 1 , 4 ] [ 2 , 3 ] [ 1 , 2 , 3 , 4 ] _ = left-∷ (right-∷ (right-∷ (left-∷ [])))
Given a decidable predicate and a list, we can split the list into two lists that merge to give the original list, where all elements of one list satisfy the predicate, and all elements of the other do not satisfy the predicate.
Define the following variant of the traditional filter
function on lists, which given a decidable predicate and a list returns a list of elements that satisfy the predicate and a list of elements that don’t, with their corresponding proofs.
split : ∀ {A : Set} {P : A → Set} (P? : Decidable P) (zs : List A)
→ ∃[ xs ] ∃[ ys ] ( merge xs ys zs × All P xs × All (¬_ ∘ P) ys )
-- Your code goes here
Lambda
module Lambda where
Imports
open import Data.Bool using (Bool; true; false; T; not) open import Data.Empty using (⊥; ⊥-elim) open import Data.List using (List; _∷_; []) open import Data.Nat using (ℕ; zero; suc) open import Data.Product using (∃-syntax; _×_) open import Data.String using (String; _≟_) open import Data.Unit using (tt) open import Relation.Nullary using (Dec; yes; no; ¬_) open import Relation.Nullary.Decidable using (False; toWitnessFalse) open import Relation.Nullary.Negation using (¬?) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
open import plfa.part2.Lambda hiding (var?; ƛ′_⇒_; case′_[zero⇒_|suc_⇒_]; μ′_⇒_; plus′)
Exercise mul
(recommended)
Write out the definition of a lambda term that multiplies two natural numbers. Your definition may use plus
as defined earlier.
-- Your code goes here
Exercise mulᶜ
(practice)
Write out the definition of a lambda term that multiplies two natural numbers represented as Church numerals. Your definition may use plusᶜ
as defined earlier (or may not — there are nice definitions both ways).
-- Your code goes here
Exercise primed
(stretch)
Some people find it annoying to write ` "x"
instead of x
. We can make examples with lambda terms slightly easier to write by adding the following definitions:var? : (t : Term) → Bool var? (` _) = true var? _ = false ƛ′_⇒_ : (t : Term) → {_ : T (var? t)} → Term → Term ƛ′_⇒_ (` x) N = ƛ x ⇒ N case′_[zero⇒_|suc_⇒_] : Term → Term → (t : Term) → {_ : T (var? t)} → Term → Term case′ L [zero⇒ M |suc (` x) ⇒ N ] = case L [zero⇒ M |suc x ⇒ N ] μ′_⇒_ : (t : Term) → {_ : T (var? t)} → Term → Term μ′ (` x) ⇒ N = μ x ⇒ N
Recall that T
is a function that maps from the computation world to the evidence world, as defined in Chapter Decidable. We ensure to use the primed functions only when the respective term argument is a variable, which we do by providing implicit evidence. For example, if we tried to define an abstraction term that binds anything but a variable:
_ : Term
_ = ƛ′ two ⇒ two
Agda would complain it cannot find a value of the bottom type for the implicit argument. Note the implicit argument’s type reduces to ⊥
when term t
is anything but a variable.
plus
can now be written as follows:plus′ : Term plus′ = μ′ + ⇒ ƛ′ m ⇒ ƛ′ n ⇒ case′ m [zero⇒ n |suc m ⇒ `suc (+ · m · n) ] where + = ` "+" m = ` "m" n = ` "n"
Write out the definition of multiplication in the same style.
Exercise _[_:=_]′
(stretch)
The definition of substitution above has three clauses (ƛ
, case
, and μ
) that invoke a with
clause to deal with bound variables. Rewrite the definition to factor the common part of these three clauses into a single function, defined by mutual recursion with substitution.
-- Your code goes here
Exercise —↠≲—↠′
(practice)
Show that the first notion of reflexive and transitive closure above embeds into the second. Why are they not isomorphic?
-- Your code goes here
Exercise plus-example
(practice)
Write out the reduction sequence demonstrating that one plus one is two.
-- Your code goes here
Exercise Context-≃
(practice)
Show that Context
is isomorphic to List (Id × Type)
. For instance, the isomorphism relates the context
∅ , "s" ⦂ `ℕ ⇒ `ℕ , "z" ⦂ `ℕ
to the list
[ ⟨ "z" , `ℕ ⟩ , ⟨ "s" , `ℕ ⇒ `ℕ ⟩ ]
-- Your code goes here
Exercise ⊢mul
(recommended)
Using the term mul
you defined earlier, write out the derivation showing that it is well typed.
-- Your code goes here
Exercise ⊢mulᶜ
(practice)
Using the term mulᶜ
you defined earlier, write out the derivation showing that it is well typed.
-- Your code goes here
Properties
module Properties where
Imports
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym; cong; cong₂) open import Data.String using (String; _≟_) open import Data.Nat using (ℕ; zero; suc) open import Data.Empty using (⊥; ⊥-elim) open import Data.Product using (_×_; proj₁; proj₂; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Relation.Nullary using (¬_; Dec; yes; no) open import Function using (_∘_) open import plfa.part1.Isomorphism open import plfa.part2.Lambda
open import plfa.part2.Properties hiding (value?; Canonical_⦂_; unstuck; preserves; wttdgs)
Exercise Canonical-≃
(practice)
Well-typed values must take one of a small number of canonical forms, which provide an analogue of the Value
relation that relates values to their types. A lambda expression must have a function type, and a zero or successor expression must be a natural. Further, the body of a function must be well typed in a context containing only its bound variable, and the argument of successor must itself be canonical:infix 4 Canonical_⦂_ data Canonical_⦂_ : Term → Type → Set where C-ƛ : ∀ {x A N B} → ∅ , x ⦂ A ⊢ N ⦂ B ----------------------------- → Canonical (ƛ x ⇒ N) ⦂ (A ⇒ B) C-zero : -------------------- Canonical `zero ⦂ `ℕ C-suc : ∀ {V} → Canonical V ⦂ `ℕ --------------------- → Canonical `suc V ⦂ `ℕ
Show that Canonical V ⦂ A
is isomorphic to (∅ ⊢ V ⦂ A) × (Value V)
, that is, the canonical forms are exactly the well-typed values.
-- Your code goes here
Exercise Progress-≃
(practice)
Show that Progress M
is isomorphic to Value M ⊎ ∃[ N ](M —→ N)
.
-- Your code goes here
Exercise progress′
(practice)
Write out the proof of progress′
in full, and compare it to the proof of progress
above.
-- Your code goes here
Exercise value?
(practice)
Combine progress
and —→¬V
to write a program that decides whether a well-typed term is a value:postulate value? : ∀ {A M} → ∅ ⊢ M ⦂ A → Dec (Value M)
Exercise subst′
(stretch)
Rewrite subst
to work with the modified definition _[_:=_]′
from the exercise in the previous chapter. As before, this should factor dealing with bound variables into a single function, defined by mutual recursion with the proof that substitution preserves types.
-- Your code goes here
Exercise mul-eval
(recommended)
Using the evaluator, confirm that two times two is four.
-- Your code goes here
Exercise: progress-preservation
(practice)
Without peeking at their statements above, write down the progress and preservation theorems for the simply typed lambda-calculus.
-- Your code goes here
Exercise subject_expansion
(practice)
We say that M
reduces to N
if M —→ N
, but we can also describe the same situation by saying that N
expands to M
. The preservation property is sometimes called subject reduction. Its opposite is subject expansion, which holds if M —→ N
and ∅ ⊢ N ⦂ A
imply ∅ ⊢ M ⦂ A
. Find two counter-examples to subject expansion, one with case expressions and one not involving case expressions.
-- Your code goes here
Exercise stuck
(practice)
Give an example of an ill-typed term that does get stuck.
-- Your code goes here
Exercise unstuck
(recommended)
Using progress, it is easy to show that no well-typed term is stuck:postulate unstuck : ∀ {M A} → ∅ ⊢ M ⦂ A ----------- → ¬ (Stuck M)Using preservation, it is easy to show that after any number of steps, a well-typed term remains well typed:
postulate preserves : ∀ {M N A} → ∅ ⊢ M ⦂ A → M —↠ N --------- → ∅ ⊢ N ⦂ AAn easy consequence is that starting from a well-typed term, taking any number of reduction steps leads to a term that is not stuck:
postulate wttdgs : ∀ {M N A} → ∅ ⊢ M ⦂ A → M —↠ N ----------- → ¬ (Stuck N)
Felleisen and Wright, who introduced proofs via progress and preservation, summarised this result with the slogan well-typed terms don’t get stuck.Provide proofs of the three postulates, unstuck
, preserves
, and wttdgs
above.
-- Your code goes here